Apple Microarchitecture Research by Dougall Johnson

M1/A14 P-core (Firestorm): Overview | Base Instructions | SIMD and FP Instructions
M1/A14 E-core (Icestorm):  Overview | Base Instructions | SIMD and FP Instructions

LD1 (multiple, 4 regs, 2S)

Test 1: uops

Code:

  ld1 { v0.2s, v1.2s, v2.2s, v3.2s }, [x6]
  nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop
  mov x0, 1
  mov x1, 2
  mov x8, 0

(no loop instructions)

1000 unrolls and 1 iteration

Retires (minus 60 nops): 4.000

Issues: 4.000

Integer unit issues: 0.001

Load/store unit issues: 4.000

SIMD/FP unit issues: 0.000

retire uop (01)cycle (02)schedule uop (52)schedule int uop (53)schedule ldst uop (55)dispatch ldst uop (58)simd uops in schedulers (5a)dispatch uop (78)map ldst uop (7d)map ldst uop inputs (80)? int output thing (e9)? ldst retires (ed)
640053014540091400840001200040004000400014000
640053022640011400040001200040004000400014000
640042948040011400040001200040004000400014000
640042948140011400040001200040004000400014000
640042947840011400040001200040004000400014000
640042948240011400040001200040004000400014000
640042948940011400040001200040004000400014000
640042947940011400040001200040004000400014000
640042947940011400040001200040004000400014000
640042948240011400040001200040004000400014000

Test 2: throughput

Count: 8

Code:

  ld1 { v0.2s, v1.2s, v2.2s, v3.2s }, [x6]
  ld1 { v0.2s, v1.2s, v2.2s, v3.2s }, [x6]
  ld1 { v0.2s, v1.2s, v2.2s, v3.2s }, [x6]
  ld1 { v0.2s, v1.2s, v2.2s, v3.2s }, [x6]
  ld1 { v0.2s, v1.2s, v2.2s, v3.2s }, [x6]
  ld1 { v0.2s, v1.2s, v2.2s, v3.2s }, [x6]
  ld1 { v0.2s, v1.2s, v2.2s, v3.2s }, [x6]
  ld1 { v0.2s, v1.2s, v2.2s, v3.2s }, [x6]
  mov x7, x6
  mov x8, x6
  mov x9, x6
  mov x10, x6
  mov x11, x6
  mov x12, x6
  mov x13, x6

(fused SUBS/B.cc loop)

100 unrolls and 100 iterations

Result (median cycles for code divided by count): 2.0006

retire uop (01)cycle (02)schedule uop (52)schedule int uop (53)schedule simd uop (54)schedule ldst uop (55)dispatch int uop (56)dispatch simd uop (57)dispatch ldst uop (58)int uops in schedulers (59)simd uops in schedulers (5a)dispatch uop (78)map int uop (7c)map ldst uop (7d)map int uop inputs (7f)map ldst uop inputs (80)? int output thing (e9)? ldst retires (ed)? int retires (ef)
3202051601593201371010320036100032005830010304683201582003200722003200161320000100
3202041600573201011010320000100032001030025600403201102003200162003200161320000100
3202041600563201071010320006100032001030025600403201102003200162003200161320000100
3202041600483201011010320000100032001030025600403201102003200162003200721320000100
3202041600483201011010320000100032001030025600403201102003200162003200161320000100
3202041600483201011010320000100032001030025600403201102003200162003200161320000100
3202041600483201011010320000100032001030025600403201102003200162003200161320000100
3202041600543201011010320000100032005830025612363201582003200722003200161320000100
3202041601043201011010320000100032001030013441903201102003200162003200161320000100
3202041600563201011010320000100032001030025600403201102003200162003200161320000100

1000 unrolls and 10 iterations

Result (median cycles for code divided by count): 2.0007

retire uop (01)cycle (02)schedule uop (52)schedule int uop (53)schedule simd uop (54)schedule ldst uop (55)dispatch int uop (56)dispatch simd uop (57)dispatch ldst uop (58)int uops in schedulers (59)simd uops in schedulers (5a)dispatch uop (78)map int uop (7c)map ldst uop (7d)map int uop inputs (7f)map ldst uop inputs (80)map simd uop inputs (81)? int output thing (e9)? ldst retires (ed)? simd retires (ee)? int retires (ef)
320025160650320041110320030100320000301754018320010203200002032007201320000010
320024160059320011110320000100320000302560218320010203200002032000001320000010
320024160054320011110320000100320000302560218320010203200002032000001320000010
320024160054320011110320000100320000302560218320010203200002032000001320000010
320024160054320011110320000100320058301918542320068203200722032000001320000010
320024160054320011110320000100320000302560218320010203200002032000001320000010
320024160054320011110320000100320000302560218320010203200002032000001320000010
320024160054320011110320000100320000302560218320010203200002032000001320000010
320025160110320047110320036100320000302560218320010203200002032000001320000010
320024160054320011110320000100320000302560218320010203200002032000001320000010