Apple Microarchitecture Research by Dougall Johnson

M1/A14 P-core (Firestorm): Overview | Base Instructions | SIMD and FP Instructions
M1/A14 E-core (Icestorm):  Overview | Base Instructions | SIMD and FP Instructions

LD1 (multiple, 4 regs, 4S)

Test 1: uops

Code:

  ld1 { v0.4s, v1.4s, v2.4s, v3.4s }, [x6]
  nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop
  mov x0, 1
  mov x1, 2
  mov x8, 0

(no loop instructions)

1000 unrolls and 1 iteration

Retires (minus 60 nops): 4.000

Issues: 4.000

Integer unit issues: 0.001

Load/store unit issues: 4.000

SIMD/FP unit issues: 0.000

retire uop (01)cycle (02)schedule uop (52)schedule int uop (53)schedule ldst uop (55)dispatch ldst uop (58)int uops in schedulers (59)simd uops in schedulers (5a)dispatch uop (78)map int uop (7c)map ldst uop (7d)map ldst uop inputs (80)? int output thing (e9)? ldst retires (ed)
64005299374021140204000012000400004000400014000
64004294174001140004000012000400004000400014000
64004294294001140004000012000400004000400014000
64004294314001140004000012000400004000400014000
64004294244001140004000012000400004000400014000
64004294504001140004000012023400004000400014000
64004295424001140004000012000400004000400014000
64004294264001140004000012000400004000400014000
64004294334001140004000012000400004000400014000
64004294254001140004004012012400404004400014000

Test 2: throughput

Count: 8

Code:

  ld1 { v0.4s, v1.4s, v2.4s, v3.4s }, [x6]
  ld1 { v0.4s, v1.4s, v2.4s, v3.4s }, [x6]
  ld1 { v0.4s, v1.4s, v2.4s, v3.4s }, [x6]
  ld1 { v0.4s, v1.4s, v2.4s, v3.4s }, [x6]
  ld1 { v0.4s, v1.4s, v2.4s, v3.4s }, [x6]
  ld1 { v0.4s, v1.4s, v2.4s, v3.4s }, [x6]
  ld1 { v0.4s, v1.4s, v2.4s, v3.4s }, [x6]
  ld1 { v0.4s, v1.4s, v2.4s, v3.4s }, [x6]
  mov x7, x6
  mov x8, x6
  mov x9, x6
  mov x10, x6
  mov x11, x6
  mov x12, x6
  mov x13, x6

(fused SUBS/B.cc loop)

100 unrolls and 100 iterations

Result (median cycles for code divided by count): 2.0007

retire uop (01)cycle (02)schedule uop (52)schedule int uop (53)schedule ldst uop (55)dispatch int uop (56)dispatch ldst uop (58)int uops in schedulers (59)simd uops in schedulers (5a)dispatch uop (78)map int uop (7c)map ldst uop (7d)map int uop inputs (7f)map ldst uop inputs (80)map simd uop inputs (81)? int output thing (e9)? ldst retires (ed)? simd retires (ee)? int retires (ef)
3202051601823201371013200361003200103001024194320110200320016200320016013200000100
3202041600543201011013200001003200103002560206320110200320016200320016013200000100
3202041600633201011013200001003200103002560830320110200320016200320016013200000100
3202041602873201011013200001003200103002560296320110200320016200320016013200000100
3202041600543201011013200001003200103002560206320110200320016200320016013200000100
3202041600543201011013200001003200103002560206320110200320016200320016013200000100
3202051603733201311013200301003200103002560350320110200320016200320016013200000100
3202041600543201011013200001003200103002560206320110200320016200320016013200000100
3202041600543201011013200001003200103002560206320110200320016200320016013200000100
3202041600543201011013200001003200103002560206320110200320016200320016013200000100

1000 unrolls and 10 iterations

Result (median cycles for code divided by count): 2.0007

retire uop (01)cycle (02)schedule uop (52)schedule int uop (53)schedule ldst uop (55)dispatch int uop (56)dispatch ldst uop (58)int uops in schedulers (59)simd uops in schedulers (5a)dispatch uop (78)map int uop (7c)map ldst uop (7d)map int uop inputs (7f)map ldst uop inputs (80)map simd uop inputs (81)? int output thing (e9)? ldst retires (ed)? simd retires (ee)? int retires (ef)
3200251601823200471132003610320010301600248320020203200162032000001320000010
3200241600543200111132000010320000302560218320010203200002032000001320000010
3200241600543200111132000010320058302506342320068203200722032001601320000010
3200251604083200411132003010320000302560272320010203200002032000001320000010
3200241600513200111132000010320000302560488320010203200002032000001320000010
3200251603963200411132003010280746242239684280754162807682032000001320000010
3200241600543200111132000010320000302560272320010203200002032000001320000010
3200251603573200411132003010320000302560308320010203200002032000001320000010
3200241600513200111132000010320000302560164320010203200002032000001320000010
3200241600513200111132000010320058301919380320068203200722032000001320000010