Apple Microarchitecture Research by Dougall Johnson

M1/A14 P-core (Firestorm): Overview | Base Instructions | SIMD and FP Instructions
M1/A14 E-core (Icestorm):  Overview | Base Instructions | SIMD and FP Instructions

LD1 (multiple, post-index, 3 regs, 1D)

Test 1: uops

Code:

  ld1 { v0.1d, v1.1d, v2.1d }, [x6], x8
  nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop
  mov x0, 1
  mov x1, 2
  mov x8, 0

(no loop instructions)

1000 unrolls and 1 iteration

Retires (minus 60 nops): 3.000

Issues: 4.000

Integer unit issues: 1.001

Load/store unit issues: 3.000

SIMD/FP unit issues: 0.000

retire uop (01)cycle (02)schedule uop (52)schedule int uop (53)schedule ldst uop (55)dispatch int uop (56)dispatch ldst uop (58)int uops in schedulers (59)simd uops in schedulers (5a)dispatch uop (78)map ldst uop (7d)map ldst uop inputs (80)? int output thing (e9)? ldst retires (ed)
6300529567400910033006100230003000900040003000400010013000
6300429299400110013000100030003000900040003000400010013000
6300429298400110013000100030003000900040003000400010013000
6300429288400110013000100030003000900040003000400010013000
6300429295400110013000100030003000900040003000400010013000
6300429296400110013000100030003000900040003000400010013000
6300429297400110013000100030003000900040003000400010013000
6300429297400110013000100030003000900040003000400010013000
6300429299400110013000100030003000900040003000400010013000
6300429298400110013000100030003000900040003000400010013000

Test 2: throughput

Count: 8

Code:

  ld1 { v0.1d, v1.1d, v2.1d }, [x6], x8
  ld1 { v0.1d, v1.1d, v2.1d }, [x6], x8
  ld1 { v0.1d, v1.1d, v2.1d }, [x6], x8
  ld1 { v0.1d, v1.1d, v2.1d }, [x6], x8
  ld1 { v0.1d, v1.1d, v2.1d }, [x6], x8
  ld1 { v0.1d, v1.1d, v2.1d }, [x6], x8
  ld1 { v0.1d, v1.1d, v2.1d }, [x6], x8
  ld1 { v0.1d, v1.1d, v2.1d }, [x6], x8
  mov x7, x6
  mov x8, x6
  mov x9, x6
  mov x10, x6
  mov x11, x6
  mov x12, x6
  mov x13, x6
  mov x8, 0

(fused SUBS/B.cc loop)

100 unrolls and 100 iterations

Result (median cycles for code divided by count): 1.5006

retire uop (01)cycle (02)schedule uop (52)schedule int uop (53)schedule ldst uop (55)dispatch int uop (56)dispatch ldst uop (58)int uops in schedulers (59)simd uops in schedulers (5a)dispatch uop (78)map int uop (7c)map ldst uop (7d)map int uop inputs (7f)map ldst uop inputs (80)? int output thing (e9)? ldst retires (ed)? int retires (ef)
240205120171320154801202400348012124001026031375619432011420024001420032001680003240000100
2402041200543201108010424000680104240008260313192001232011220024001220032001680003240000100
2402041200453201038010324000080104240008260313192001232011220024001220032001680003240000100
2402041200453201038010324000080104240008260313192001232011220024001220032009080020240000100
2402041200453201038010324000080104240008260313192001232011220024001220032001680003240000100
2402041200453201038010324000080104240008260313192001232011220024001220032001680003240000100
2402041200953201038010324000080104240008260313192001232011220024001220032001680003240000100
2402041200453201038010324000080104240008260313192001232011220024001220032001680003240000100
2402041200453201038010324000080104240008260313192001232011220024001220032009080020240000100
2402041200453201038010324000080104240008260313192001232011220024001220032001680003240000100

1000 unrolls and 10 iterations

Result (median cycles for code divided by count): 1.5007

retire uop (01)cycle (02)schedule uop (52)schedule int uop (53)schedule ldst uop (55)dispatch int uop (56)dispatch ldst uop (58)int uops in schedulers (59)simd uops in schedulers (5a)dispatch uop (78)map int uop (7c)map ldst uop (7d)map int uop inputs (7f)map ldst uop inputs (80)? int output thing (e9)? ldst retires (ed)? int retires (ef)
2400251201683200608003024003080031240010260043132024832002420240014203200008000124000010
2400241200543200118001124000080010240000260030192021832001020240000203200008000124000010
2400241200543200118001124000080010240000260030192021832001020240000203200908002124000010
2400241201323200118001124000080010240000260030192021832001020240000203200008000124000010
2400241200543200118001124000080010240000260030192021832001020240000203200008000124000010
2400241200543200118001124000080010240000260030192021832001020240000203200008000124000010
2400241200543200118001124000080010240000260030192021832001020240000203200008000124000010
2400241200543200118001124000080010240000260030192021832001020240000203200928002124000010
2400241200543200118001124000080010240000260030192021832001020240000203200008000124000010
2400241200543200118001124000080010240000260030192021832001020240000203200008000124000010