Apple Microarchitecture Research by Dougall Johnson

M1/A14 P-core (Firestorm): Overview | Base Instructions | SIMD and FP Instructions
M1/A14 E-core (Icestorm):  Overview | Base Instructions | SIMD and FP Instructions

LD1 (multiple, post-index, 3 regs, 2D)

Test 1: uops

Code:

  ld1 { v0.2d, v1.2d, v2.2d }, [x6], x8
  nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop
  mov x0, 1
  mov x1, 2
  mov x8, 0

(no loop instructions)

1000 unrolls and 1 iteration

Retires (minus 60 nops): 3.000

Issues: 4.000

Integer unit issues: 1.001

Load/store unit issues: 3.000

SIMD/FP unit issues: 0.000

retire uop (01)cycle (02)schedule uop (52)schedule int uop (53)schedule ldst uop (55)dispatch int uop (56)dispatch ldst uop (58)int uops in schedulers (59)simd uops in schedulers (5a)dispatch uop (78)map ldst uop (7d)map ldst uop inputs (80)? int output thing (e9)? ldst retires (ed)
6300529984402110063015100530003000900040003000400010013000
6300429436400110013000100030003000900040003000400010013000
6300529437400510023003100130003000900040003000400010013000
6300429663400110013000100030003000900040003000400010013000
6300429373400110013000100030003000900040003000400010013000
6300429348400110013000100030003000900040003000400010013000
6300429378400110013000100030003000900040003000400010013000
6300429375400110013000100030003000900040003000400010013000
6300429400400110013000100030003000900040003000400010013000
6300429541400110013000100030003000900040003000400010013000

Test 2: throughput

Count: 8

Code:

  ld1 { v0.2d, v1.2d, v2.2d }, [x6], x8
  ld1 { v0.2d, v1.2d, v2.2d }, [x6], x8
  ld1 { v0.2d, v1.2d, v2.2d }, [x6], x8
  ld1 { v0.2d, v1.2d, v2.2d }, [x6], x8
  ld1 { v0.2d, v1.2d, v2.2d }, [x6], x8
  ld1 { v0.2d, v1.2d, v2.2d }, [x6], x8
  ld1 { v0.2d, v1.2d, v2.2d }, [x6], x8
  ld1 { v0.2d, v1.2d, v2.2d }, [x6], x8
  mov x7, x6
  mov x8, x6
  mov x9, x6
  mov x10, x6
  mov x11, x6
  mov x12, x6
  mov x13, x6
  mov x8, 0

(fused SUBS/B.cc loop)

100 unrolls and 100 iterations

Result (median cycles for code divided by count): 1.5007

retire uop (01)cycle (02)schedule uop (52)schedule int uop (53)schedule ldst uop (55)dispatch int uop (56)dispatch ldst uop (58)int uops in schedulers (59)simd uops in schedulers (5a)dispatch uop (78)map int uop (7c)map ldst uop (7d)map int uop inputs (7f)map ldst uop inputs (80)? int output thing (e9)? ldst retires (ed)? int retires (ef)
2402051201703201508012024003080121240010260313145219432011420024001420032001680003240000100
2402041200533201038010324000080104240008260319192752032011220024001220032031980072240000100
2402041201103201038010324000080104240008260312192019432011220024001220032001680003240000100
2402041200533201038010324000080104240008260312192019432011220024001220032001680003240000100
2402041200533201038010324000080104240155260467167798132031120024018020032061580140240000100
2402041210233204408022324021780224240251260565111772832044120024029620032001680003240000100
2402041200533201038010324000080104240008260312192019432011220024001220032001680003240000100
2402041200533201038010324000080104240008260312192019432011220024001220032001680003240000100
2402041200533201038010324000080104240008260312192019432011220024001220032001680003240000100
240204120053320103801032400008010424005626036784226432017720024006820032001680003240000100

1000 unrolls and 10 iterations

Result (median cycles for code divided by count): 1.5005

retire uop (01)cycle (02)schedule uop (52)schedule int uop (53)schedule ldst uop (55)dispatch int uop (56)dispatch ldst uop (58)int uops in schedulers (59)simd uops in schedulers (5a)dispatch uop (78)map int uop (7c)map ldst uop (7d)map int uop inputs (7f)map ldst uop inputs (80)? int output thing (e9)? ldst retires (ed)? int retires (ef)
2400251201953200648003024003480031240000260030192016432001020240000203200008000124000010
2400251201013200608003024003080031240000260031191998232001020240000203200008000124000010
2400241200433200118001124000080010240000260031191998232001020240000203200008000124000010
2400241200433200118001124000080010240000260031191998232001020240000203200008000124000010
2400241200433200118001124000080010240000260031191998232001020240000203200008000124000010
2400241200433200118001124000080010240000260031191998232001020240000203200008000124000010
2400251201033200618003124003080031240000260031191998232001020240000203200008000124000010
2400241200433200118001124000080010240000260031191998232001020240000203200008000124000010
2400241200433200118001124000080010240000260031191998232001020240000203200008000124000010
2400241200433200118001124000080010240000260031191998232001020240000203200008000124000010