Apple Microarchitecture Research by Dougall Johnson

M1/A14 P-core (Firestorm): Overview | Base Instructions | SIMD and FP Instructions
M1/A14 E-core (Icestorm):  Overview | Base Instructions | SIMD and FP Instructions

LD1 (multiple, post-index, 3 regs, 8H)

Test 1: uops

Code:

  ld1 { v0.8h, v1.8h, v2.8h }, [x6], x8
  nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop
  mov x0, 1
  mov x1, 2
  mov x8, 0

(no loop instructions)

1000 unrolls and 1 iteration

Retires (minus 60 nops): 3.000

Issues: 4.000

Integer unit issues: 1.001

Load/store unit issues: 3.000

SIMD/FP unit issues: 0.000

retire uop (01)cycle (02)schedule uop (52)schedule int uop (53)schedule ldst uop (55)dispatch int uop (56)dispatch ldst uop (58)int uops in schedulers (59)simd uops in schedulers (5a)dispatch uop (78)map ldst uop (7d)map ldst uop inputs (80)? int output thing (e9)? ldst retires (ed)
6300530115402110063015100530003000900040003000400010013000
6300429403400110013000100030003000900040003000400010013000
6300429446400110013000100030003000900040003000400010013000
6300429444400110013000100030003000900040003000400010013000
6300429442400110013000100030003000900040003000400010013000
6300429371400110013000100030003000900040003000400010013000
6300429443400110013000100030003000900040003000400010013000
6300429443400110013000100030003000900040003000400010013000
6300429458400110013000100030003000900040003000400010013000
6300429446400110013000100030003000900040003000400010013000

Test 2: throughput

Count: 8

Code:

  ld1 { v0.8h, v1.8h, v2.8h }, [x6], x8
  ld1 { v0.8h, v1.8h, v2.8h }, [x6], x8
  ld1 { v0.8h, v1.8h, v2.8h }, [x6], x8
  ld1 { v0.8h, v1.8h, v2.8h }, [x6], x8
  ld1 { v0.8h, v1.8h, v2.8h }, [x6], x8
  ld1 { v0.8h, v1.8h, v2.8h }, [x6], x8
  ld1 { v0.8h, v1.8h, v2.8h }, [x6], x8
  ld1 { v0.8h, v1.8h, v2.8h }, [x6], x8
  mov x7, x6
  mov x8, x6
  mov x9, x6
  mov x10, x6
  mov x11, x6
  mov x12, x6
  mov x13, x6
  mov x8, 0

(fused SUBS/B.cc loop)

100 unrolls and 100 iterations

Result (median cycles for code divided by count): 1.5007

retire uop (01)cycle (02)schedule uop (52)schedule int uop (53)schedule ldst uop (55)dispatch int uop (56)dispatch ldst uop (58)int uops in schedulers (59)simd uops in schedulers (5a)dispatch uop (78)map int uop (7c)map ldst uop (7d)map int uop inputs (7f)map ldst uop inputs (80)? int output thing (e9)? ldst retires (ed)? int retires (ef)
240205120150320150801202400308012124001026031375624832011420024001420032001680003240000100
2402041200563201038010324000080104240008260312192024832011220024001220032001680003240000100
2402041200563201038010324000080104240008260312192024832011220024001220032001680003240000100
2402041200563201038010324000080104240008260312192024832011220024001220032001680003240000100
2402041200563201038010324000080104240056260368124055832017720024006820032001680003240000100
2402041200563201038010324000080104240008260312192024832011220024001220032001680003240000100
2402041200563201038010324000080104240008260312192024832011220024001220032001680003240000100
2402041200563201038010324000080104240008260312192024832011220024001220032001680003240000100
2402041200563201038010324000080104240008260312192024832011220024001220032001680003240000100
2402051201193201518012124003080121240008260312192024832011220024001220032001680003240000100

1000 unrolls and 10 iterations

Result (median cycles for code divided by count): 1.5006

retire uop (01)cycle (02)schedule uop (52)schedule int uop (53)schedule ldst uop (55)dispatch int uop (56)dispatch ldst uop (58)int uops in schedulers (59)simd uops in schedulers (5a)dispatch uop (78)map int uop (7c)map ldst uop (7d)map int uop inputs (7f)map ldst uop inputs (80)? int output thing (e9)? ldst retires (ed)? int retires (ef)
2400251201733200678003124003680031240010260043108024832002420240014203200008000124000010
2400251201003200668003124003580031240000260030131999832001020240000203200008000124000010
2400241200453200118001124000080010240000260030191999832001020240000203200008000124000010
2400241200453200118001124000080010240000260030191999832001020240000203200008000124000010
2400241200453200118001124000080010240000260030191999832001020240000203200008000124000010
2400241200453200118001124000080010240000260030191999832001020240000203200008000124000010
2400241201753200118001124000080010240000260031192023232001020240000203200008000124000010
2400241200453200118001124000080010240000260030191999832001020240000203200008000124000010
2400241200453200118001124000080010240000260030191999832001020240000203200008000124000010
2400241200453200118001124000080010240000260030191999832001020240000203200008000124000010