Apple Microarchitecture Research by Dougall Johnson

M1/A14 P-core (Firestorm): Overview | Base Instructions | SIMD and FP Instructions
M1/A14 E-core (Icestorm):  Overview | Base Instructions | SIMD and FP Instructions

ST1 (multiple, 2 regs, 16B)

Test 1: uops

Code:

  st1 { v0.16b, v1.16b }, [x6]
  nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop ; nop
  mov x0, 0

(no loop instructions)

1000 unrolls and 1 iteration

Retires (minus 60 nops): 2.000

Issues: 2.000

Integer unit issues: 0.001

Load/store unit issues: 2.000

SIMD/FP unit issues: 0.000

retire uop (01)cycle (02)schedule uop (52)schedule int uop (53)schedule ldst uop (55)dispatch ldst uop (58)simd uops in schedulers (5a)dispatch uop (78)map ldst uop (7d)map ldst uop inputs (80)? int output thing (e9)? ldst retires (ed)
62005297452005120042000800020002000400012000
62004293982001120002000800020002000400012000
62004293942001120002000800020002000400012000
62005294002001120002000800020002000400012000
62004294502001120002000800020002000400012000
62004293632001120002000800020002000400012000
62004294162001120002000800020002000400012000
62004293392001120002000800020002000400012000
62004293392001120002000800020002000400012000
62004293412001120002000800020002000400012000

Test 2: throughput

Count: 8

Code:

  st1 { v0.16b, v1.16b }, [x6]
  st1 { v0.16b, v1.16b }, [x6]
  st1 { v0.16b, v1.16b }, [x6]
  st1 { v0.16b, v1.16b }, [x6]
  st1 { v0.16b, v1.16b }, [x6]
  st1 { v0.16b, v1.16b }, [x6]
  st1 { v0.16b, v1.16b }, [x6]
  st1 { v0.16b, v1.16b }, [x6]
  mov x7, x6
  mov x8, x6
  mov x9, x6
  mov x10, x6
  mov x11, x6
  mov x12, x6
  mov x13, x6

(fused SUBS/B.cc loop)

100 unrolls and 100 iterations

Result (median cycles for code divided by count): 2.0005

retire uop (01)cycle (02)schedule uop (52)schedule int uop (53)schedule ldst uop (55)dispatch int uop (56)dispatch ldst uop (58)int uops in schedulers (59)simd uops in schedulers (5a)dispatch uop (78)map int uop (7c)map ldst uop (7d)map int uop inputs (7f)map ldst uop inputs (80)? int output thing (e9)? ldst retires (ed)? int retires (ef)
16020516015316011910116001810016003430027200841601342001600482003200161160000100
16020416003916010110116000010016000130027198861601012001600082003200161160000100
16020416003916010110116000010016000130027198861601012001600082003200161160000100
16020416003916010110116000010016000130027198861601012001600082003200961160000100
16020516007816011810116001710016000130027200641601012001600082003200161160000100
16020416003916010110116000010016000130027198861601012001600082003200161160000100
16020416003916010110116000010016000130027198861601012001600082003200161160000100
16020416003916010110116000010016000130027198861601012001600082003200961160000100
16020416003916010110116000010016000230027137971601022001600082003200161160000100
16020416003916010110116000010016000130027198861601012001600082003200161160000100

1000 unrolls and 10 iterations

Result (median cycles for code divided by count): 2.0005

retire uop (01)cycle (02)schedule uop (52)schedule int uop (53)schedule ldst uop (55)dispatch int uop (56)dispatch ldst uop (58)int uops in schedulers (59)simd uops in schedulers (5a)dispatch uop (78)map int uop (7c)map ldst uop (7d)map int uop inputs (7f)map ldst uop inputs (80)? int output thing (e9)? ldst retires (ed)? int retires (ef)
16002516015516002911160018101600013027200101600112016000820320000116000010
16002416003716001111160000101600003027198471600102016000020320000116000010
16002416003716001111160000101600003027198471600102016000020320096116000010
16002416003716001111160000101600003027198471600102016000020320000116000010
16002416003716001111160000101600003027198471600102016000020320000116000010
16002416003716001111160000101600003027198471600102016000020320000116000010
16002416003716001111160000101600343027199601600442016004820320096116000010
16002416003716001111160000101600003027198471600102016000020320000116000010
16002416003716001111160000101600003027198471600102016000020320000116000010
16002416003716001111160000101600003027198471600102016000020320000116000010